
NASA Contractor Report 198212

ICASE Report No. 95-61

ICASE
MULTIPHASE COMPLETE EXCHANGE
ON PARAGON, SP2 & CS-2

Shahid H. Bokhari

NASA Contract No. NAS1-19480
September 1995

Institute for Computer Applications in Science and Engineering
NASA Langley Research Center
Hampton, VA 23681-0001

Operated by Universities Space Research Association

m\& m
National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23681-0001

DTXG QUALITY INSPECTED 8

"DISTRIBUTION STATEMENT A

Approved for public release;
Distribution Unlimited

Multiphase Complete Exchange

on Paragon, SP2 & CS-2

Shahid H. Bokhari
Department of Electrical Engineering

University of Engineering & Technology, Lahore, Pakistan

Abstract

Accesion For

NTIS CRA&I
DTIC TAB
Unannounced □
Justification

By
Distribution /

Availability Codes

Dist

m
Avail and /or

Special

The overhead of interprocessor communication is a major factor in
limiting the performance of parallel computer systems. The complete
exchange is the severest communication pattern in that it requires each
processor to send a distinct message to every other processor. This
pattern is at the heart of many important parallel applications. On
hypercubes, multiphase complete exchange has been developed and
shown to provide optimal performance over varying message sizes.

Most commercial multicomputer systems do not have a hypercube
interconnect. However they use special purpose hardware and ded-
icated communication processors to achieve very high performance
communication and can be made to emulate the hypercube quite well.

Multiphase complete exchange has been implemented on three con-
temporary parallel architectures: the Intel Paragon, IBM SP2 and
Meiko CS-2. The essential features of these machines are described
and their basic interprocessor communication overheads are discussed.
The performance of multiphase complete exchange is evaluated on
each machine. It is shown that the theoretical ideas developed for
hypercubes are also applicable in practice to these machines and that
multiphase complete exchange can lead to major savings in execution
time over traditional solutions.

Research supported by the National Aeronautics and Space Administration under
NASA contract NAS1-19480 while the author was in residence at the Institute for Com-
puter Applications in Science k Engineering, Mail Stop 132C, NASA Langley Research
Center, Hampton, Virginia, 23681-0001.

Work on the Intel Paragon was performed using the CACR parallel computer system
operated by Caltech on behalf of the Center for Advanced Computing Research. Access
to this facility was provided by NASA.

Work on the IBM-SP2 was performed using the resources of the Cornell Theory Cen-
ter, which receives major funding from the National Science Foundation and New York
State with additional support from the Advanced Research Projects Agency, the National
Center for Research Resources at the National Institutes of Health, IBM Corporation and
members of the Corporate Research Institute.

Work on the Meiko CS-2 was carried out using the resources of the Vienna Center
for Parallel Computing, funded as part of the European ESPRIT project PPPE, and was
supported by the Institute for Software Technology and Parallel Systems of the University
of Vienna.

1 Introduction

Interprocessor communication overhead is one of the key factors that limit
the performance of massively parallel systems. Considerable effort is re-
quired to minimize this overhead and no general solutions are as yet in sight.
No amount of special hardware or software can eliminate communication
overhead. This paper concentrates on the complete exchange or all-to-all
personalized communication pattern. This pattern requires each of a col-
lection of n processors to send a unique message to each of the remaining
n — 1 processors. Complete exchange is required in many important paral-
lel algorithms, such as Fast Fourier Transforms, matrix-vector multiply, the
alternating directions implicit (ADI) method for solving partial differential
equations, and so on. This is the severest communication requirement that
can be imposed on an interprocessor communication network and serves as
a useful benchmark of the performance of a parallel computer system.

Prior work on the complete exchange has largely focused on hypercube
architectures. Most current commercial multiprocessors are not hypercubes.
However, modern machines have powerful interconnection hardware and can
be made to emulate hypercubes with fair success. We describe the perfor-
mance of multiphase complete exchange, a family of algorithms originally de-
signed for hypercubes, on three contemporary machines: the Intel Paragon,
the IBM SP2 and the Meiko CS-2. We discuss the architectures of these ma-
chines, present their basic performance parameters and then describe how
the multiphase algorithm performs on all three.

2 The Complete Exchange

The complete exchange is a communication pattern that is required in
many important applications such as matrix transposition, matrixvector mul-
tiply, Fast Fourier Transforms and the Alternating Directions Implicit (ADI)
method for solving partial differential equations. To understand the data
movement required by this pattern refer to Figure 1 which shows a 4 x 4
block matrix stored on 4 processors. In part (a) of this Figure the matrix
is stored in column order. In part (c) the layout has been changed to row
order. It is clear that to change from (a) to (c), each processor must transmit
a block of data to every other processor. This is shown in part (b) which is

A

B

C

D

E

0
G

H

0
s

K

0

M

N

O

P

P1 P2 P3 P4

(a)

©=©
A

E

0
M

B

F

0
N

V J

C

G

K

O
J

D

H

0
P

(b)

P1 P2 P3 P4

(C)

Figure 1: Complete Exchange on 4 Processors. To change storage of blocks from
column order (a) to row order (c), each processor must send a distinct message to
every other processor (b).

a complete directed graph of four nodes. In general, complete exchange on
n processors can be represented by a complete directed graph of n nodes.

Most of the work to date on algorithms for the complete exchange has
addressed hypercube architectures. Figure 2 shows a hypercube of dimension
d = 4 with n = 2d — 16 processors. Each processor is given a binary label and
two processors are connected with a communication link if and only if their
labels differ in exactly one bit. Each processor in a hypercube is connected to
d—1 other processors. As we increase the size of the hypercube, the number
of communication links leaving a processor increases logarithmically with the
number of nodes. This is the main reason for the difficulty of constructing
hypercubes. Nevertheless, hypercubes have enjoyed success since their rich
and recursively definable interconnection permits the development of elegant
algorithms for communication. The Intel iPSC-2 & 860 and the nCube2 &
3 are examples of commercially produced hypercubes.

Almost all hypercubes use the "e-cube" routing algorithm for moving
data between processors. In essence this algorithm moves the message from
processor to processor by moving in a direction that successively increases

Figure 2: A hypercube of dimension d — 4 and size n = 2d = 16. Each node is
labeled in binary. Two nodes are connected if their binary labels differ in exactly
one bit position.

the match between current processor and the destination. Thus to travel
from processor 0010 to 1001, the path taken would be: 0010 —> 0011 —>
0001 —» 1001. On modern hypercubes, this message transmission is handled
by special communications hardware and does not disturb the computations
being carried out at intermediate nodes.

The time required to transmit a message from one node to another (as-
suming no contention for communication links) is modeled by the expression
t = X + rm, where m is the message size in bytes, T the time per byte (which
is the inverse of the communication bandwidth) and A is the startup over-
head, which is due largely to operating system activities required to launch
the message. This expression applies equally well to the non-hypercube ar-
chitectures discussed later in this paper. Over the past decade, improvements
in technology have made r improve from about 0.1//sec to less than O.Ol^isec.
However, the startup time has remained in the 50 — 100/xsec range.

2.1 Standard Exchange

The standard exchange algorithm was developed by Johnsson h Ho [7].
The following pseudo-code executes on each processor while running this
algorithm, mynumber is the label on each processor, as described in Figure
2. The symbol © stands for bitwise exclusive-or.

Standard_exchange{
for j= d — 1 downto 0 do{

if (bit j of mynumber = 0)
message=blocks n/2 to n — 1

else
message=blocks 0 to n/2 — 1

send_message_to_processor((mynura&er) © (2-7))
shuffle blocks;

}
}

Figure 3 clarifies the operation of this algorithm, which requires a total of
logn transmissions of n/2 blocks each. Blocks of data must be permuted
between each communication step in order to correctly route them to their
destinations. The logarithmic number of transmissions of this algorithm

Figure 3: The standard exchange algorithm takes d steps. During the jth. step,
nodes that differ in bit position j interchange data (indicated by double headed
arrows in the figure). The figure shows the entire algorithm with each double
headed arrow standing for an interchange of messages between the processors at its
endpoints. The label on each arrow is the step in which the exchange is carried out.
Since every possible pair of processors does not interchange messages it is clear
that messages must be forwarded through intermediate nodes to their ultimate
destinations. Shuffling of the blocks is required to route correctly blocks to their
destinations.

Figure 4: The direct exchange algorithm takes n — 1 steps. During step i, node
j sends a block to processor i © j. The figure shows data movement for step
i = 0101. No data permutation is required in this algorithm as each message block
is transmitted directly to its ultimate destination.

reduces the impact of startup time A (discussed above) and leads to very-
good performance when message sizes are small.

2.2 Direct Exchange

This algorithm transmits each block directly to its ultimate destination
(Figure 4). It was originally published by Take [10]. Subsequent work on
implementing it on the Intel iPSC-860 hypercubes was carried out by Seidel
[9] and Bokhari [4].

Direct_exchange{
for i= 1 to n — 1 do

send_block_to_processor((mynumber) © (i))

}

6

This algorithm is asymptotically optimal in that it requires exactly n — 1
messages of one block each to achieve the complete exchange. It is always the
best algorithm to use for very large message sizes. The deceptively simple
exclusive-or schedule guarantees that there is no contention for communi-
cation links under the "e-cube" routing strategy. The fact that each block
is transmitted directly to its destination means that there is no shuffling
overhead.

2.3 Multiphase Complete Exchange

Multiphase complete exchange is a family of algorithms that compromises
between the starting overhead of direct exchange and the shuffling and data
transmission overhead of standard exchange. It was developed by Ho &;
Raghunath [6] and subsequently investigated by Bokhari [2]. Figure 5 de-
scribes the operation of this algorithm.

A detailed exposition and analysis appears in [3, 8], where it is shown that
each partition of the integer d (the dimension of the hypercube) leads to a
multiphase algorithm for complete exchange. For example, for d = 5 the par-
titions are {1,1,1,1,1}, {1,1,1,2}, {1,2,2}, {1,1,3}, {1,4}, {2,3} and {5}.
In this set of partitions, {1,1,1,1,1} corresponds to standard exchange and
{5} to direct exchange. Theory developed in [3, 8] shows that of the set of
partitions of d only equipartitions (partitions in which the largest and smallest
element differ by at most 1) can ever be optimal. Thus, for d = 5 the optimal
multiphase algorithms are those corresponding to {1,1,1,1,1},{1,2,2},{2,3}
and {5}. It can be proved that the number of these optimal partitions is no
more than 2yd. This is a very small number since d, the dimension of the
hypercube, equals log n, where n is the number of nodes. Figure 6 shows the
run times of the family of multiphase algorithms plotted against message size
for a hypothetical hypercube of dimension d = 5. Some algorithms have run
times that are never optimal and are of no interest to us. The three algo-
rithms of interest are the ones corresponding to the partitions {1,1,1,1,1},
{2,3} and {5} because these are the ones that are optimal.

(a)

^^^^

1000 1001 - 11 1010

. /

L / - /

1100 1101 - - 1111 1110

0100 0101 - - 0111 0110

',

V -. \ V
' \

0000 0001 - 0010

(b)

Figure 5: A multiphase algorithm on a 16 node hypercube. (a) Shows direct
exchanges being carried out separately on two 8 node subcubes. This is followed
(b) by direct exchanges on 8 two node hypercubes. A data permutation step is
required between (a) and (b) to correctly route the data.

8

message size (bytes)

Figure 6: Only multiphase algorithms corresponding to equipartitions can ever
be optimal. The figure shows what can happen when d = 5.

Figure 7: The mesh interconnect of a 4 x 4 Paragon. The circles represent compute
nodes while the squares show special purpose hardware for communication. Mes-
sage routing is done via the "row-column" algorithm explained in the text. The
figure shows two pairs of processors communicating and contending for a single
edge. Such edge contention can lead to substantial overhead.

3 The Architectures

The machines on which we evaluated the multiphase complete exchange are
the Intel Paragon, IBM SP2 and Meiko CS-2. All three machines are in
commercial production and incorporate special purpose hardware for inter-
processor communication.

3.1 Intel Paragon

The Intel Paragon on which the experiments described in this report
were carried out is located at the Center for Advanced Computing Research
at Caltech. It is a mesh-connected machine with 512 processors arranged in
a 32 x 16 rectangle. Each processor is connected to four neighbors through
special purpose hardware (Figure 7). Each node on this machine has two

10

DDD DDDDDDDD DDDD

Figure 8: A multistage interconnect of the type used in the SP2 or CS-2. Each
square represents a 4 x 4 bidirectional crossbar switch. Any two processors can be
connected to each other by suitably setting the switches. Most of the connections
leading into the topmost layer have been omitted to avoid a congested diagram.

Intel i860 processors (one for computation and one for communication) and
32 MBytes of memory. The i860s run at 50MHz and are capable of 75 MFlops
each. Programming on this machine was done in C augmented with the nx
message passing library. This library permits programs to send and receive
messages from other processors, carry out global synchronization, compute
global sums, etc., via calls to C functions. Message routing on this machine is
done using the "row-column" rule. A message first travels along a row until
it reaches the column on which the destination lies. It then travels along the
column until it reaches the destination.

3.2 IBM SP2

The Cornell Theory Center's 512 node IBM SP2 multicomputer was used
for these experiments. The processors on this machine are interconnected
through a multistage switch (Figure 8). Each square box in this figure rep-
resents a bidirectional 4x4 switch. In theory each processor can talk to any
other without contention for switches or links. In practice the setting up of
such connections is difficult to implement on the fly and significant degra-
dation due to contention is seen. Each computational node (not shown in
Figure 8) has a P0WER2 architecture RS/6000 processor that runs at 66.7

11

MHz, has at least 128 MBytes of memory, and is capable of 266 MFlops.
This machine was programmed in C using the MPI message passing library
[5]. MPI provides roughly the same functions on the SP2 as the nx library
does on the Paragon.

3.3 Meiko CS-2

The Vienna Center for Parallel Computing has recently installed a Meiko
CS-2. This is a 128 processor machine interconnected through a multistage
switch similar to that of the SP2 (Figure 8). Each node is a SuperSPARC
running at 50MHz, with 64 MBytes of memory and capable of 100 MFlops.
This machine was programmed in C using the mpsc library which is designed
to be fully compatible with the nx library on the Intel hypercubes and the
Paragon.

While all three machines incorporate powerful interprocessor communica-
tion mechanisms, the programmer still has to take many factors into account
in order to implement efficient parallel algorithms. These issues are discussed
in detail by Bokhari [1].

4 Performance Measurements

There are 3 key performance figures of a parallel machine that determine its
success at executing multiphase complete exchange. These are

Communication time: the time required to send a message of m bytes
from one processor to another.

Synchronization time: the time for the machine to execute a barrier (that
is, to ensure that all processors have reached a specified point in the
parallel program.) This is important because multiphase complete ex-
change requires data transfers to be carefully scheduled for correct op-
eration.

Memory copy time: Excluding the purely direct algorithm, all multiphase
algorithms require some amount of data permutation within a single
processor in order to route data blocks to their correct destination.
Thus, memory-to-memory transfer time within the same processor is
an important measure of performance.

12

0.0009

0.0008

0.0007

0.0006

-o 0.0005
CD

-2-

■I 0.0004

0.0003

0.0002 -

0.0001 -

"i r

A SP2

1 iCS-2
■(-frz&t

.,«-';

Paragon

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
message size (bytes)

Figure 9: Communication time on the Paragon, SP2 and CS-2.

Figure 9 shows the communication time for all three machines, measured
over the range 0 to 16000 bytes in increments of 64 bytes. The discontinuities
in the Paragon plots are caused by packetization overhead. The spikes on
the plots for the SP2 and CS-2 are caused by interference from other jobs
or by operating system events. Table 1 summarizes this information and
also includes measurements of synchronization and memory copy time. The
expressions for run times are for messages smaller than 8000 bytes, as this
is the range of interest to us as far as the multiphase complete exchange is
concerned.

5 Experimental Measurements

Figures 10 and 11 show the performance of the multiphase complete ex-
change on 32 and 64 processor pools on the three machines under study. On

13

0.03

0.025

0.02

T 0.015

0.01

0.005

0.03

0.025

0.02

0.015

0.01

0.005

PARAGON

- {11111}

. {122}

~""1——*~~"
'""",—-- (23}
— pMMAW (5)

' _,i ■■T-J^ ***

predicted
{5} predicted

500 1000 1500 2000 2500
message size (bytes)

SP2

{23} predicted

Li Ml

{5} predicted

0 500 1000 1500 2000 2500
message size (bytes)

0.025

— 0.015

0.005

500 1000 1500 2000 2500
message size (bytes)

Figure 10: Performance of multiphase complete exchange on 32 processors.

14

Mem. copy
(//sec/byte)

Barrier (fisec)
2d procs.

Communi cation
(//sec per byte)

Paragon 0.0140 126d — 113 75 +0.011m
SP2 0.0043 72d - 52 70 + 0.043m

CS-2 0.0153 17J-5.6 105 + 0.025m

Table 1: Summary of performance figures

the Paragon we use 4 x 8 and 8x8 submeshes while on the SP2 the allocation
of processors is beyond our control. On the CS-2 we obtained measurements
over contiguously numbered sets of processors.

The plots obtained have the general shape predicted by the theory of
[3, 8]. The direct algorithms {5} and {6} are optimal for large message sizes.
The standard algorithms {1,1,1,1,1} and {1,1,1,1,1,1} tend to have good
performance for very small message sizes. The algorithms corresponding to
equipartitions of cardinality 2, that is {2,3} and {3,3} are always optimal for
small message sizes. This is very similar to the results for the Intel iPSC-860
hypercube given in [2].

In Figures 10 and 11 we have also plotted the predicted run time of the
two best algorithms based on the performance figures given in Table 1 and
the formulae in [3]. The agreement here is very poor and the predicted plots
serve only to give a qualitative idea of the shape of the measured plots.
This is because the predicted curves assume a hypercube interconnect which
can execute the multiphase algorithm without any contention for commu-
nication links. Our machines are not hypercubes and suffer from link and
switch contention. Nevertheless these plots show the benefits of adopting the
multiphase approach.

The noise or fluctuation in the plots for the SP2 are particularly note-
worthy. We believe this to be caused by contention for switches by jobs
other than our own job. Very wide fluctuations are encountered on the SP2,
making the task of predicting performance very difficult.

The intensity of the complete exchange communication pattern stresses
communication hardware and software very severely. On the SP2 we were
unable to run successfully beyond 64 processors because of switch problems

15

0.03

0.025

1000 1500 2000 2500
message size (bytes)

0.03

0.025

0.02

0.015

0.01

0.005

0.03

0.025

0.02

0.015

0.01

0.005

. !|{.fjjl"-{222j If

500 1000 1500 2000 2500
message size (bytes)

(11
CS-2

my if
r J

22)/{222) / {35^ . (6)

W "r
\ jJ^ f /" /

"'

J /

if//
If __,,.-

 .
 *—

{33} predig fted

[6} predicted

 ♦

500 1000 1500
message size (bytes)

2000 2500

Figure 11: Performance of multiphase complete exchange on 64 processors.

16

0.06

0.05

0.04 -

o 003

E

0.02

0.01

1000 1500
message size (bytes)

2000 2500

o
03

-J2-
©
E

0.1

0.09

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01 #

PARAGON] {11111111} {11222} J2222},/ {233}

J tiV /v/'i .^/Vf A/H Ü44}

-f" {44} predicted
"' '"'{8| predicted

0 500 1000 1500
message size (bytes)

2000 2500

Figure 12: Multiphase complete exchange on 128 and 256 processors on Paragon.

17

presumably caused by intense communication. On the Paragon, although we
were able to run on submeshes as large as 16 x 16, the operating system could
not accommodate the 255 message receives required by the direct algorithm
{8} for the entire range of message sizes. The plot for this algorithm in
Figure 12 stops abruptly at 1728 bytes for this reason.

These experiences, though unpleasant, underline the utility of multiphase
complete exchange as a "stress test" of communication hardware and soft-
ware. We are confident that the problems encountered will be resolved by
the respective manufacturers in due course.

6 Conclusions

Interprocessor communication is what makes parallel programming challeng-
ing. This paper has explored the performance of three contemporary parallel
machines when carrying out the complete exchange—the densest communica-
tion pattern possible. We have shown that the multiphase complete exchange
family of algorithms, which were originally developed for hypercubes, per-
form well on modern non-hypercube machines.

The performance of multiphase exchange on these machines does not
match well the figures predicted from basic performance parameters. This is
because there are complex effects of link contention, switch contention, pag-
ing disturbance and overheads due to operating system timer interrupts on
these machines that are not captured by the basic parameters. Furthermore,
although these machines can execute hypercube algorithms with good per-
formance, they are really not hypercubes and thus suffer from a mismatch of
the algorithm to the architecture. This observation demonstrates the falsity
of the commonly held belief that, in modern parallel machines, the matching
of algorithm to architecture is irrelevant. If that had been the case, these
machines would have given us predictable performance, as is the case with
hypercube implementations of the same algorithms [2].

The complete exchange problem is severe enough to have uncovered sev-
eral problems with the communication hardware and software of two of the
machines studied. This points out the utility of using it as an extremely
stressful test of parallel architectures.

Future work in this area should address the problem of designing exchange
algorithms that take the specific architectures of these and other modern

18

machines into account. It would also be useful to study the Paragon, SP2
and CS-2 in greater detail, so that a more precise performance model can
be developed. Such a model will be invaluable in permitting practitioners to
evaluate the efficiency of their parallel algorithm implementations.

Acknowledgments

I am grateful to Yousuff Hussaini at ICASE for his encouragement of this
research. I have received valuable assistance and advice from Tom Crockett,
David Keyes, David Nicol, John van Rosendale and Linda Wilson. Discus-
sions with Steve Seidel, Paul Fischer and Xian-He Sun have also been very
helpful.

I wish to thank Hans Zima and Barbara Chapman of the University
of Vienna for hosting my stay in Vienna and for use of the Meiko CS-2.
Vestica Aleksandar, Thomas Fahringer, Ian Glendenning, and Hans Mortisch
provided generous assistance in Vienna. James Cownie of Meiko was very
helpful in providing information on the high resolution clock on the CS-2.

Access to the supercomputers at Caltech was arranged by Paul Messina.
I wish to thank him and his able staff: Walker Aumann, Clark Chang, Shay
Chinn, Alex Leung, Jan Lindheim, Heidi Lorenz-Wirzba, Julie Murphy, Mark
L. Neidengard, Gary Dell'Osso, Elsa Villate, for their alacrity in answering
my queries and patiently tolerating the numerous crashes I caused on their
machines. Thanh Phung, Al Bessey and Ellen Deleganes of Intel helped me
with various problems on the Paragon.

Peter M. Siegel kindly allocated an account on the IBM SP2 at Cornell.
Pat Colasurdo, Cindy Harwzinske, Marcia Pottle, Nikki Reynolds, Rachel
Smith, Daniel Sverdlik and Carol Webster were very helpful to me during
my work on the SP2.

References

[1] S. H. Bokhari. Communication overhead on the Intel Paragon, IBM SP2 and
Meiko CS-2. ICASE Interim Report 28, September 1995.

[2] S. H. Bokhari. Multiphase complete exchange on a circuit switched hypercube.
In Proc. 1991 International Conf. Parallel Processing, pages 525-529, 1991.

19

[3] S. H. Bokhari. Multiphase complete exchange: A theoretical analysis. Tech-
nical Report 93-64, ICASE, August 1993. NASA Contractor Report 191531.
To appear in IEEE Trans. Computers.

[4] S. H. Bokhari. Complete exchange on the Intel iPSC-860 hypercube. Technical
Report 91-4, ICASE, January 1991.

[5] William Gropp, Ewing Lusk, and Anthony Skjellum. Using MPI: Portable
Parallel Programming with the Message-Passing Interface. MIT Press, Cam-
bridge, Massachusetts, 1994.

[6] C-T. Ho and M. T. Raghunath. Efficient communication primitives on hy-
percubes. In Proc. 6th. DMCC, pages 390-397, 1991.

[7] S. L. Johnsson and C-T. Ho. Matrix transposition on boolean n-cube config-
ured ensemble architectures. SIAM J. Matrix Anal. Appl, 9(3):419-454, July
1988.

[8] David Nicol and Shahid Bokhari. Optimal multiphase complete exchange on
circuit-switched hypercube architectures. In Proc. 1994 ACM SIGMETRICS
Conf, pages 252-260, Nashville, TN.

[9] Steve Seidel, Ming-Horng Lee, and Shivi Fotedar. Concurrent bidirectional
communication on the Intel iPSC/860 and iPSC/2. Technical Report CS-TR
9006, Dept. of Computer Science, Michigan Tech. Univ., November 1990.

[10] R. Take. A routing method for the all-to-all burst on hypercube network. In
Proc. 35th. National Conf. Info. Proc. Soc. Japan, pages 151-152, 1987. In
Japanese.

A Related Web Sites

Additional information about the computing centers and computer architec-
tures described in this report can be found at the following web sites.

Caltech Center for Adv. Comput. Res. http://www. ccsf. caltech. edu
Intel Paragon http://www.ssd.intel.com/paragon.html
Cornell Theory Center http: //www. tc. Cornell. edu
IBM SP-2 http://ibm.tc.cornell.edu/ibm/pps/sp2/
Vienna Center for Parallel Computing http: //www.vcpc.univie. ac. at/vcpc.html
Meiko CS-2 http://www.meiko.com/
ICASE http://www.icase.edu/docs/home .html

20

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searchingexisting data sources,
gathering and maintaining the data needed, and completing and reviewingthe collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

September 1995
3. REPORT TYPE AND DATES COVERED

Contractor Report

4. TITLE AND SUBTITLE

MULTIPHASE COMPLETE EXCHANGE ON PARAGON, SP2 &
CS-2

6. AUTHOR(S)

Shahid H. Bokhari

5. FUNDING NUMBERS

C NAS1-19480
WU 505-90-52-01

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Institute for Computer Applications in Science
and Engineering
Mail Stop 132C, NASA Langley Research Center
Hampton, VA 23681-0001

8. PERFORMING ORGANIZATION
REPORT NUMBER

ICASE Report No. 95-61

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Langley Research Center
Hampton, VA 23681-0001

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA CR-198212
ICASE Report No. 95-61

11. SUPPLEMENTARY NOTES

Langley Technical Monitor: Dennis M. Bushneil
Final Report
Submitted to IEEE Parallel and Distributed Technology

12a. DISTRIBUTION/AVAILABILITY STATEMENT

U nclassified-U nlimit ed

Subject Category 60,61

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)
The overhead of interprocessor communication is a major factor in limiting the performance of parallel computer
systems. The complete exchange is the severest communication pattern in that it requires each processor to send
a distinct message to every other processor. This pattern is at the heart of many important parallel applications.
On hypercubes, multiphase complete exchange has been developed and shown to provide optimal performance over
varying message sizes.

Most commercial multicomputer systems do not have a hypercube interconnect. However they use special pur-
pose hardware and dedicated communication processors to achieve very high performance communication and can
be made to emulate the hypercube quite well.

Multiphase complete exchange has been implemented on three contemporary parallel architectures: the Intel
Paragon, IBM SP2 and Meiko CS-2. The essential features of these machines are described and their basic inter-
processor communication overheads are discussed. The performance of multiphase complete exchange is evaluated
on each machine. It is shown that the theoretical ideas developed for hypercubes are also applicable in practice to
these machines and that multiphase complete exchange can lead to major savings in execution time over traditional
solutions.

14. SUBJECT TERMS
All-to-all personalized; complete exchange; communication overhead; hypercube; IBM
SP2; Intel Paragon; Meiko CS-2; message passing; mesh; multistage network; parallel
computing

15. NUMBER OF PAGES

22

16. PRICE CODE

A03
17. SECURITY CLASSIFICATION

OF REPORT
Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE
Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

20. LIMITATION
OF ABSTRACT

NSN 7540-01-280-5500 Standard Form 298(Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

